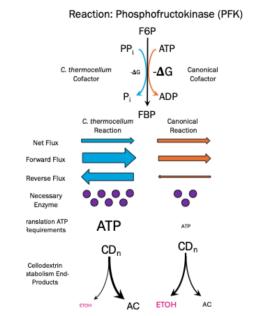
Coupling flux predictions to available protein in Clostridium thermocellum

Background/Objective

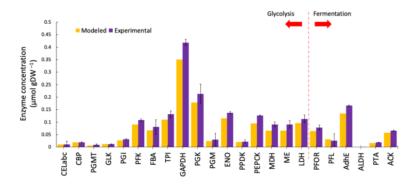
• Clostridium thermocellum is a promising candidate for the consolidated bioprocessing of lignocellulosic biomass to ethanol, but inefficient catabolic enzymes burden available protein resources and lead to the generation of undesired end-products.

Approach

- Resource balance analysis (RBA) models couple predicted reaction fluxes to available enzymes.
- Genome-scale metabolic model *i*CTH669, absolute proteomics, and fluxes from ¹³C labeling data informed reconstruction of an RBA model of *C. thermocellum*, ctRBA.
- Model predicted impact of altering the cofactor of single enzymes in *C. thermocellum* on maximum theoretical ethanol yields and titers.


Results

- Glycolytic and fermentation enzyme concentration predictions matched proteomics dataset within 0.1 µmol gDW⁻¹, and computations highlight high-cost glycolytic and fermentation enzymes.
- Simulations of putative strain designs pinpoint altering cofactors in phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase, and aldehyde-alcohol dehydrogenase reactions as having meaningful improvements on ethanol production, both via reaction network changes and increases to enzyme efficiency.


Significance/Impact

• Model 'ctRBA' serves as a predictive tool for assessing the effects of genetic perturbations on proteome allocation and metabolic efficiency. The simulation output provides ranking of enzymelevel genetic perturbations showing promise for higher ethanol yields, which can be evaluated *in vivo* in *C. thermocellum* for consolidated bioprocessing applications. The RBA framework could be extended to improve phenotype prediction accuracy by further-detailing analyses of the apparent turnover rates of enzymes and their relationship to cellular conditions.

Willis et al., Metab. Eng. (2025). https://doi.org/10.1016/j.ymben.2025.09.001.

Cellodextrin catabolism in *C. thermocellum* and the effect of cofactors on fermentation products

Agreement in measured and predicted cellodextrin catabolism enzyme concentrations

