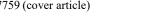
Impact of tailored Acetvlated xylan and lignin on Xvlan ss-NMR observables from MD simulations S-Rich Lignin G-Rich Lianin Insights from ss-NMR ~70-75% of all xylans Preferential lignin/hemi surface binding in share surface contact order: Methoxy > S-Lignin > G-Lignin with lignin Unbound. 3f. ~32% Lignin Bound, 2f, ~68% Cellulose Microfibril Ł 3f Xylan 2f Xylan (Unbound) (Bound) Little to no direct lignin/cellulose ~25-30% of all xylan not within surface contact of lignin contact observed Adapted from: Kang and Wang, Nat. Comm. (2019) **Informed Molecular Models**

architectures dictating specific ss-NMR signatures.

Significance

15

Investigating plant SCW superstructure using a combined ssNMR and MD approach will greatly improve our molecular-level understanding of cell wall recalcitrance. Experimental data (ssNMR) will inform detailed atomistic cell wall models (MD), together providing better tools capable of predicting deconstruction performance and biomass structure.


Combined Analytics and Modeling Probing Polymer-Polymer Interactions Within Secondary Cell Walls leads to better structural insights Background

of the Plant Cell Wall

- The molecular-level architecture of the plant Secondary Cell Wall (SCW) is elusive due to the amorphous and heterogeneous nature of lignocellulosic biomass.
- A combined experimental and computational approach is presented to bridge this gap.

Selected Conclusions

- Polymer-Polymer interactions are probed in detail with solid-state NMR measurements (ssNMR) on ¹³C-enriched poplar stems.
- Extent of the lignin/hemicellulose interaction is **quantified** for the first time: ~70 – 75% of all acetylated xylan share surface contact with lignin.
- Evidence of preferential xylan/lignin binding: S-lignin > G-lignin.
- Xylan AC_{Me} /Lignin inter-polymer distance is in the order of 0.4 0.5 nm
- Molecular dynamics simulations can illuminate the underlying atomistic

OENERGY INNOVATION