Elucidating the Mechanisms of Enhanced Lignin Bioconversion by an Alkali Sterilization Strategy

Background

- Biological lignin valorization is emerging as a promising green platform for lignin conversion.
- Lignin generally exhibits poor solubility and inhomogeneous distribution in aqueous fermentation media. Specifically, heat processing during conventional thermal sterilization promotes lignin particle aggregation and deteriorates lignin dispersion.
- Poor lignin dispersion in fermentation media limits biological conversion efficiency significantly.

Approach

• We develop an alkali sterilization strategy to replace thermal sterilization for lignin bioconversion, which integrates alkaline solubilization and sterilization functions effectively.

Outcomes

- Lignin dispersion is significantly improved. The volume of colloidal lignin particles decreased by 96%.
- Complete aseptic effect is achieved.
- Alkali sterilization modifies lignin molecular structure (increased hydrophilic carboxyl groups, lower weight-average molecular weight, and narrower molar-mass dispersity).
- Lignin bioconversion is significantly enhanced. Rhodococcus opacus PD630 cell growth, lignin degradation, and lipids production are improved.

alkali treat 24 h Smaller particles, lower Mw, higher bioconversion efficiency. Ikali treat 30 min without thermal with thermal lignin precipitates hydrophobic chain colloidal lignin sterilization sterilization particles -COO--COOH Fermentation Sterilization

ASL: alkaline sterilized lignin, ATSL: alkaline and thermally sterilized lignin, NSL: non-sterilized lignin, TSL: thermally sterilized lignin

Significance

- Facile alkali sterilization strategy without any heat input makes lignin dispersion no longer a bottleneck.
- This work provides a platform technique for efficient biological lignin valorization.

