And/or aromatic esters in mesophiles and thermophiles.

Outcomes and Impacts

- Developed de novo thermostable AATs that are efficient and compatible with various pathways and microbial hosts (e.g., mesophiles and thermophiles).
- Demonstrated high conversion of various alcohols and achieved about 14 g/L of isoamyl acetate with >95% (mol/mol) conversion efficiency.
- Demonstrated that CAT robustness with enhanced thermostability is critical for efficient ester production in thermophiles by maintaining high level of intracellular CAT abundance.
- Engineered *C. thermocellum* to produce up to 1 g/L of isobutyl esters from cellulose.

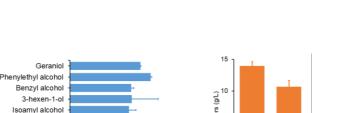
Significance

This work not only presents a robust, efficient, and highly compatible AAT platform for designer bioester production, but also elucidates the impact of enzyme thermostability on engineering heterologous pathways in thermophiles.

Engineering Promiscuity of Chloramphenicol Acetyltransferase for Microbial Designer Ester Biosynthesis

Background

- By condensing an acyl-CoA and an alcohol, alcohol acyltransferases (AATs) can serve as an interchangeable metabolic module for microbial biosynthesis of a diverse class of ester molecules with broad applications as flavors, fragrances, solvents, and drop-in biofuels.
- The current lack of robust and efficient AATs limits their utility with precursor pathways and microbial hosts.


Approach

 Through bioprospecting and model-guided protein engineering, we engineered substrate promiscuity of chloramphenicol acetyltransferases (CATs) to function as robust and efficient AATs compatible with at least 21 alcohols and 8 acyl-CoAs for microbial biosynthesis of linear, branched, saturated, unsaturated and/or aromatic esters in mesophiles and thermophiles.

isobutyl isobutyrat Abundance of CATec3 Y20F isobutyl aceta than CATec3 HSCT2105 HSCT2106 HSCT2113 HSCT2107 HSCT2108 ₿ 1.5 · 명_{. 1.0}, CATsa F97W CATsa Y20F CATec3 CATec3 Y20F Y20F 41381 13.97 1.00 1.16 1.69 1.65 68.3 ± 1.2 69.3 ± 0.5 76.0 ± 1.2 80.2 ± 1.5 87.5±0.5 4.1+/-0.7 10.5 ± 1.1 10.3+/-1.2 4.2 ± 0.1 13.0 ± 0.2

Impact of enzyme thermostability in ester production by *C. thermocellum* fermenting cellulose

Demonstration of efficiency and compatibility of the engineered AAT in *Escherichia coli* whole-

cell biocatalyst

Pentanol

20

60 80

Conversion % (mol/mol)

Isobutanol Butanol

sters (g/l

Fold change

lelting point (%

"/K_M (1/M/s)

Isoamvl Phenylethy

acetate

acetate