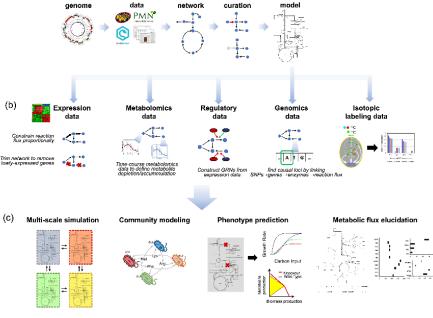
and Machine Learning-based Methods (a) Annotated Biochemical Draft metabolic Network genome data Background · Understanding the governing principles behind organisms'

- metabolism and growth underpins their effective deployment as bioproduction chassis or feedstocks.
- The ever-increasing generation of 'omics data has led to increasingly sophisticated quantitative tools to predict responses to external environmental factors and internal genotypic perturbations.

Approach

- This review examines the latest algorithmic advances integrating principles of stoichiometric, thermodynamic and kinetic methodology that are propelling metabolic modeling.
- · It highlights the context of advances and describes each's pertinence based on problem type and data availability.

Outcome


- This review covers recent approaches and imparts insight on promising areas for future advances.
- Extensive tables include all relevant algorithms, frameworks, and tools and summarize the types of tasks they perform, platform and licensing availability, example referce applications, and data requirements.

(C)

Significance

This review provides a comprehensive review of recent advances and has detailed information on more than 90 recent frameworks and software tools.

Suthers et al. Recent advances in constraint and machine learning-based metabolic modeling by leveraging stoichiometric balances, thermodynamic feasibility and kinetic law formalisms, (2021) Metab Eng 63:13-33, doi:10.1016/j.ymben.2020.11.013

constraint-based Overview of metabolic model construction, augmentation by incorporating large-scale experimental datasets, and select applications.

Final metabolic