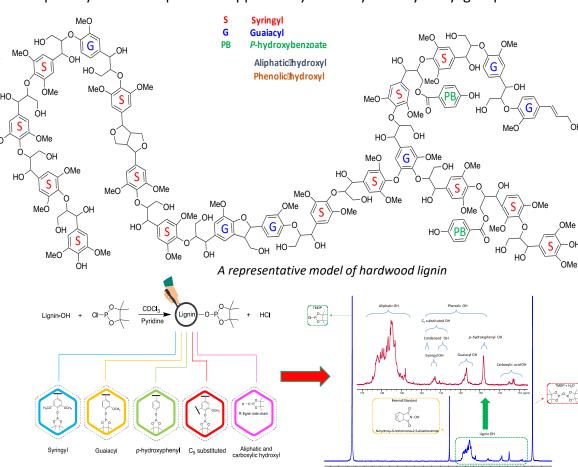
Determination of hydroxyl groups in biorefinery feeds via quantitative ³¹P NMR spectroscopy

Background

- Hydroxyl groups are among critical functionalities that affect the physical/chemical properties and overall reactivity of lignin, playing an important role in lignin valorization and biorefinery process.
- ³¹P NMR spectroscopy has its unique characterization capability and broad potential applicability for analysis of hydroxyl groups.

Approach


 A standardized ³¹P NMR procedure to precisely measure the content of different types of hydroxyl groups in bio-aromatics and related compounds.

Outcomes

- The ³¹P NMR technique provides complete quantitative information of hydroxyl groups in lignin, pyrolysis bio-oil, or tannin.
- Aliphatic hydroxyls (-OH), carboxylic -OH, and various types of phenolic -OH groups attached to syringyl, guaiacyl, and p-hydroxyphenyl units are readily measured.
- ³¹P NMR offers unique advantages in measuring hydroxyl groups in a single spectrum with great signal resolution, small amounts of sample requirement, and in a short experimental time.

Significance

- A well-defined protocol was introduced to help maintain the accuracy and uniform application of this valuable methodology as widely used by both academia and industry.
- This method can improve our understanding of lignin conversion

Scheme of lignin derivatization and a quantitative ³¹P NMR spectrum of a hardwood poplar lignin.

Meng, X. et al. (2019) Determination of hydroxyl groups in biorefinery resources via quantitative ³¹P NMR spectroscopy.

Nature Protocols. doi: 10.1038/s41596-019-0191-1